Foundation-Industry Relationships - A New Business Model Joint-Venture Philanthropy in Therapy Development. Ronald J. Bartek, Curr Top Med Chem. 2013 Nov 27.
Keywords: business model, medical therapy development, academic scientists, government agencies, foundations, biotechs, small biopharmaceutical entities, larger industry companies patient-advocacy community, joint-venture philanthropy.
Friedreich Ataxia and close related scientific news. Topics related to rare diseases.
Friday, November 29, 2013
Optical Coherence Tomography and Visual Field Findings in Patients With Friedreich Ataxia.
Optical Coherence Tomography and Visual Field Findings in Patients With Friedreich Ataxia.Dağ E, Ornek N, Ornek K, Erbahçeci-Timur IE; J Neuroophthalmol. 2013 Nov 25.
Wednesday, November 27, 2013
Clinical Trial: 3D Gait Analysis Participants Needed
Clinical Trial: 3D Gait Analysis Participants Needed. Center for Gait and Movement Analysis Lab at the Children's Hospital Colorado. COMIRB Protocol Number: 13-1857
This study plans to learn more about the coordination of how people without a walking pathology and people who are typically developing or normal walk in response to various conditions using motion capture technology at the Center for Gait and Movement Analysis Lab.
Eligibility Criteria: .../... Diagnosis of either Friedreich's or spinocerebellar ataxia .../...
This study plans to learn more about the coordination of how people without a walking pathology and people who are typically developing or normal walk in response to various conditions using motion capture technology at the Center for Gait and Movement Analysis Lab.
Eligibility Criteria: .../... Diagnosis of either Friedreich's or spinocerebellar ataxia .../...
Monday, November 25, 2013
Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy.
Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy. Liu D, Hu K, Niemann M, Herrmann S, Cikes M, Störk S, Gaudron PD, Knop S, Ertl G, Bijnens B, Weidemann F; Circulation. Cardiovascular Imaging [2013, 6(6):1066-1072]. DOI: 10.1161/CIRCIMAGING.113.000683
Keywords: differential diagnosis, cardiac amyloidosis, isolated arterial hypertension, Fabry disease, Friedreich ataxia, deceleration time of early filling, left ventricular hypertrophy, longitudinal strain
Keywords: differential diagnosis, cardiac amyloidosis, isolated arterial hypertension, Fabry disease, Friedreich ataxia, deceleration time of early filling, left ventricular hypertrophy, longitudinal strain
Sunday, November 24, 2013
Cell Symposia: Using Stem Cells to Model and Treat Human Disease
Cell Symposia: Using Stem Cells to Model and Treat Human Disease, November 21-23, 2013, Cedars-Sinai Medical Center, Los Angeles, USA
Posters about Friedreich's Ataxia
Combined genome editing, reprogramming, and high-throughput biology identify novel therapeutics for Friedreich’s Ataxia
R. Villaseñor*1 ,2, L. Miraglia3, P. Manos4, F. Berenshteyn4, A. Romero3, B. Tu3, T. Punga1 ,2, P. Knuckles1 ,2, S. Duss1 ,2, C. Littlefield4, 1Friedrich Miescher Institute for Biomedical Research, Switzerland, 2University of Basel, Switzerland, 3Genomics Institute of the Novartis Research Foundation, USA, 4Novartis Institutes for Biomedical Research, USA
Epigenetic therapy for Friedreich’s ataxia
E. Soragni*1, E. Campau1, J. Du1, W. Miao2, V. Jacques2, J.R. Rusche2, J.M. Gottesfeld1, 1The Scripps Research Institute, USA, 2Repligen Corporation, USA
PDF
Posters about Friedreich's Ataxia
Combined genome editing, reprogramming, and high-throughput biology identify novel therapeutics for Friedreich’s Ataxia
R. Villaseñor*1 ,2, L. Miraglia3, P. Manos4, F. Berenshteyn4, A. Romero3, B. Tu3, T. Punga1 ,2, P. Knuckles1 ,2, S. Duss1 ,2, C. Littlefield4, 1Friedrich Miescher Institute for Biomedical Research, Switzerland, 2University of Basel, Switzerland, 3Genomics Institute of the Novartis Research Foundation, USA, 4Novartis Institutes for Biomedical Research, USA
Epigenetic therapy for Friedreich’s ataxia
E. Soragni*1, E. Campau1, J. Du1, W. Miao2, V. Jacques2, J.R. Rusche2, J.M. Gottesfeld1, 1The Scripps Research Institute, USA, 2Repligen Corporation, USA
Saturday, November 23, 2013
From evolutionary bystander to master manipulator: the emerging roles for the mitochondrial genome as a modulator of nuclear gene expression
From evolutionary bystander to master manipulator: the emerging roles for the mitochondrial genome as a modulator of nuclear gene expression. Martin P Horan, Neil J Gemmell and Jonci N Wolff; European Journal of Human Genetics (2013) 21, 1335–1337; doi:10.1038/ejhg.2013.75; published online 24 April 2013.
General issues and the challenges ahead of knowledge in genetics
Letter, PDF
General issues and the challenges ahead of knowledge in genetics
Letter, PDF
Thursday, November 21, 2013
Does Intrathecal Baclofen Have a Place in the Treatment of Painful Spasms in Friedreich Ataxia
Does Intrathecal Baclofen Have a Place in the Treatment of Painful Spasms in Friedreich Ataxia. Ghaderi Berntsson S., Holtz A., Melberg A.; Case Rep Neurol 2013;5:201-203 (DOI:10.1159/000356823).
Open Access, Full Text Pdf
Open Access, Full Text Pdf
Improving communication and swallowing function in people with a neurodegenerative disease
improving communication and swallowing function in people with a neurodegenerative disease. Adam Vogel PhD, Speech Neuroscience Unit,
The University of Melbourne, Australia.
Adam’s group is committed to enhancing communication and swallowing function in patients with progressive neurological disorders, The Speech Neuroscience Unit has several studies investigating swallowing and communication profiles in a variety of disorders including Friedreich ataxia.
The University of Melbourne, Australia.
Adam’s group is committed to enhancing communication and swallowing function in patients with progressive neurological disorders, The Speech Neuroscience Unit has several studies investigating swallowing and communication profiles in a variety of disorders including Friedreich ataxia.
Wednesday, November 20, 2013
Mitochondrial Enhancement for Neurodegenerative Movement Disorders: A Systematic Review of Trials Involving Creatine, Coenzyme Q10, Idebenone and Mitoquinone.
Mitochondrial Enhancement for Neurodegenerative Movement Disorders: A Systematic Review of Trials Involving Creatine, Coenzyme Q10, Idebenone and Mitoquinone.Liu J, Wang LN, CNS Drugs 2013 Nov 16, DOI 10.1007/s40263-013-0124-4
Keywords: Neurodegenerative movement disorders, Parkinson's disease (PD), atypical parkinsonisms, Huntington's disease (HD), Friedreich's ataxia (FA), mitochondrial dysfunction, mitochondrial enhancement, creatine, coenzyme Q10 (CoQ10), idebenone, mitoquinone.
Keywords: Neurodegenerative movement disorders, Parkinson's disease (PD), atypical parkinsonisms, Huntington's disease (HD), Friedreich's ataxia (FA), mitochondrial dysfunction, mitochondrial enhancement, creatine, coenzyme Q10 (CoQ10), idebenone, mitoquinone.
Tuesday, November 19, 2013
'Grammar' Plays Key Role in Activating Genes
'Grammar' Plays Key Role in Activating Genes. genes. ScienceDaily. Retrieved November 19, 2013, from http://www.sciencedaily.com /releases/2013/08/130812170336.htm
Researchers have probed deep into the cell's genome, beyond the basic genetic code, to begin learning the "grammar" that helps determine whether or not a gene gets switched on to make the protein it encodes.
Journal Reference:
Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Robin P Smith, Leila Taher, Rupali P Patwardhan, Mee J Kim, Fumitaka Inoue, Jay Shendure, Ivan Ovcharenko, Nadav Ahituv. Nature Genetics, 2013; DOI: 10.1038/ng.2713
Researchers have probed deep into the cell's genome, beyond the basic genetic code, to begin learning the "grammar" that helps determine whether or not a gene gets switched on to make the protein it encodes.
Journal Reference:
Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Robin P Smith, Leila Taher, Rupali P Patwardhan, Mee J Kim, Fumitaka Inoue, Jay Shendure, Ivan Ovcharenko, Nadav Ahituv. Nature Genetics, 2013; DOI: 10.1038/ng.2713
Exploring Mitochondrial Systems Properties of Neurodegenerative Diseases through Interactome Mapping
Review: Exploring Mitochondrial Systems Properties of Neurodegenerative Diseases through Interactome Mapping.James Vlasblom, Ke Jin, Sandy Kassir, Mohan Babu; Journal of Proteomics, Available online 18 November 2013. http://dx.doi.org/10.1016/j.jprot.2013.11.008
FULL TEXT PDF
FULL TEXT PDF
Sunday, November 17, 2013
Neuromuscular Scoliosis
Neuromuscular Scoliosis. Anand M. Allam, Aloysia L. Schwabe; PM&R, Volume 5, Issue 11, November 2013, Pages 957-963. http://dx.doi.org/10.1016/j.pmrj.2013.05.015
"Progression increases after ambulation is lost and during the adolescent growth spurt. Unlike idiopathic scoliosis, curve progression continues after puberty. Prevention of secondary complications and utilization of bracing can delay but not eliminate the need for corrective surgery"
"Surgical intervention may be delayed with appropriate nonoperative treatment. However, prolonged delays of surgery in the setting of a progressive neuromuscular disease may increase the risk of complications. Thus, surgical planning should be discussed early in the course of the disease."
"Progression increases after ambulation is lost and during the adolescent growth spurt. Unlike idiopathic scoliosis, curve progression continues after puberty. Prevention of secondary complications and utilization of bracing can delay but not eliminate the need for corrective surgery"
"Surgical intervention may be delayed with appropriate nonoperative treatment. However, prolonged delays of surgery in the setting of a progressive neuromuscular disease may increase the risk of complications. Thus, surgical planning should be discussed early in the course of the disease."
Saturday, November 16, 2013
Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-xL protein
Apoptotic cell death and altered calcium homeostasis caused by frataxin depletion in dorsal root ganglia neurons can be prevented by BH4 domain of Bcl-xL protein . Stefka Mincheva-Tasheva, Elia Obis, Jordi Tamarit and Joaquim Ros; Hum. Mol. Genet. (2013) doi: 10.1093/hmg/ddt576. First published online: November 15, 2013.
Keywords: Friedreich ataxia, mitochondrial protein frataxin, dorsal root ganglion (DRG), mitochondrial membrane potential decrease, neurite degeneration, apoptotic cell death, free intracellular Ca2+ levels, Ca2+-mediated signaling pathways, altered calcium homeostasis, BH4, Bcl-xL.
Keywords: Friedreich ataxia, mitochondrial protein frataxin, dorsal root ganglion (DRG), mitochondrial membrane potential decrease, neurite degeneration, apoptotic cell death, free intracellular Ca2+ levels, Ca2+-mediated signaling pathways, altered calcium homeostasis, BH4, Bcl-xL.
Valoración y tratamiento del pie espástico en el adulto
Valoración y tratamiento del pie espástico en el adulto. P. Denormandie, J.-S. Béranger, B. Combourieu, L. Mailhan, A. Schnitzler; EMC - Podología, Volume 15, Issue 4, November 2013, Pages 1-11
"Assessment and treatment of spastic foot in the adult"(Paper in Spanish)
Palabras clave: Pie equino; Espasticidad muscular; Neurotomía; Ataxia de Friedreich; enfermedades neurológicas.
keywords: Equine foot; muscle spasticity; Neurotomy, FA; neurological diseases.
"Assessment and treatment of spastic foot in the adult"(Paper in Spanish)
Palabras clave: Pie equino; Espasticidad muscular; Neurotomía; Ataxia de Friedreich; enfermedades neurológicas.
keywords: Equine foot; muscle spasticity; Neurotomy, FA; neurological diseases.
Thursday, November 14, 2013
Pacients i científics s’alien per combatre l’Atàxia de Friedreich
Pacients i científics s’alien per combatre l’Atàxia de Friedreich
·
Afectats i
familiars units en una plataforma, dues associacions de pacients i dos centres
de recerca biomèdica s’uneixen en la lluita contra aquesta malaltia neurològica
hereditària que a dia d’avui no té cura.
·
Científics del
Centre de Biologia Molecular Severo Ochoa de Madrid i de l’IRB Barcelona desenvoluparan
un projecte de teràpia gènica consistent en introduir a les cèl·lules del cos una
còpia correcta del gen defectuós que causa la malaltia.
·
L’Atàxia de
Friedreich afecta a dues persones per cada 100.000 habitants de mitjana,
únicament d’origen europeu (caucasians). A Espanya la incidència és més gran: s’estima
en 4,7 casos per cada 100.000 individus.
Barcelona, dijous
14 de novembre de 2013.- La Federació
d’Atàxies d’Espanya (FEDAES) en representació de la plataforma GENEFA per a la
cura de l’Atàxia de Friedreich, l’associació Babel Family per a la investigació
biomèdica de l’Atàxia de Friedreich, el Centre de Biologia Molecular Severo
Ochoa (CMBSO) i l’Institut de Recerca Biomèdica (IRB Barcelona) han signat un conveni
a través del qual aquestes associacions de pacients i afectats finançaran amb
donacions i durant tres anys un projecte de recerca per lluitar contra l’Atàxia
de Friedreich.
L’Ataxia de Friedreich és una malaltia degenerativa rara del
sistema nerviós que afecta a la coordinació, equilibri i moviment. És una malaltia
monogènica, és a dir, causada per la deficiència d’un únic gen. Els afectats han
heretat d’ambdós progenitors el gen de la frataxina alterat. L’objectiu del projecte
és obtenir eines moleculars per transportar fins les cèl·lules del cos i en especial a un tipus de neurones que
pateixen degeneració i causen la malaltia, una còpia correcta del gen defectuós
per restaurar els nivells normals de frataxina i detenir els símptomes
degeneratius de la malaltia.
La Plataforma GENEFA lidera la recaptació dels 300.000
euros necessaris per desenvolupar aquest projecte basat en la teràpia gènica.
Juan Carlos Baiges, en representació de FEDAES/GENEFA i Babel Family per a aquest
projecte, expressa la seva il·lusió “perquè és el primer pas cap a l’obtenció
d’un tractament eficaç basat en coneixement científic bàsic molt sòlid”. I afegeix,
“tenim un projecte esperançador per endavant que pot apropar-nos a la promesa
d’una teràpia”.
Ernest Giralt de l’IRB i Javier Díaz-Nido del CBMSO, co-líders
científics del projecte subratllen que “és infreqüent que els investigadors
bàsics entrin en un diàleg directe amb els pacients i aquest projecte és
magnífic perquè des de l’inici ens recorda que les respostes a les malalties sorgeixen
des de la recerca bàsica, el pilar de tota aplicació futura”.
UN SOL GEN ALTERAT
El metge alemany Nicholas Friedreich la va descriure per
primera vegada cap el 1860. L’Atàxia de Friedreich és una malaltia del sistema
nerviós per a la quual no existeixen ni cura ni tractaments específics. Encara
que és el tipus d’atàxia més majoritària, és una malaltia rara. Afecta,
aproximadament, a dues de cada 100.000 persones únicament entre poblacions d’origen
europeu (caucasians). A Espanya i França els números estimatius d’incidència són
més grans, amb una prevalença de 4,7 casos per 100.000 habitants, el que suggeriria
que probablement l’afectació es va iniciar en l’àrea geogràfica de la serralada
Cantàbrica.
L’Atàxia de Friedreich se sol manifestar en una franja que va dels 5 als 25 anys, amb pèrdua progressiva d’equilibri, coordinació i moviment. Uns deu
anys després els primers símptomes, els afectats acostumen a necessitar cadira
de rodes. L’esperança de vida es veu greument afectada, sobretot
si hi ha complicacions secundàries sèries, com ara la cardiomiopatia progressiva.
RESTABLIR EL GEN DE LA FRATAXINA AMB TERÀPIA GÈNICA
EL 1996, un grup internacional de científics va
identificar la causa de l’Atàxia de Friedreich com un defecte en el gen que codifica per a la proteïna
frataxina, situat en el cromosoma 9. Una de les
vies més prometedores per corregir els baixos nivells d’aquesta proteïna en les
cèl·lules és la teràpia gènica, és a dir, introduir en el nucli de les
cèl·lules la còpia correcta del gen.
“Tenim el gen complet aïllat, empaquetat en vectors o
“vehicles” transportadors i hem testat l’eficàcia en cèl·lules in vitro de
pacients. Ara hem de millorar el transport cap a les cèl·lules del sistema
nerviós i testar l’eficiència en ratolins amb atàxia” assenyala Javier Díaz-Nido,
líder del grup “Reparació neuronal i teràpia molecular en neurodegeneració.
Atàxies espinocerebeloses”, del Centre de
Biologia Molecular Severo Ochoa, centre mixt de la Universitat Autònoma de
Madrid i del CSIC, i que també pertany al Centre de Recerca Biomèdica en Xarxa sobre Malalties Rares
(CIBERER, en castellà).
El doctor Díaz-Nido és un dels màxims experts mundials en
atàxies, fa més de deu anys que estudia en concret l’Atàxia de Friedreich a
nivell molecular i desenvolupa tècniques per convertir la teràpia gènica en una realitat
més pròxima. “En els deu darrers anys s’han fet grans avançaments en teràpia gènica
gràcies a la contribució de centenars de científics de tot el món. Falta un
últim esforç perquè sigui una realitat clínica però ja comencem a entreveure
que la teràpia gènica serà una opció per tractar aquestes malalties d’origen
genètic”, sosté Díaz-Nido.
SUPERAR LA
BARRERA DEL CERVELL
El cervell està protegit per la barrera hematoencefàlica.
Aquesta barrera dificulta l’entrada al cervell de substàncies tòxiques però
també és un mur per als fàrmacs. És en aquesta àrea de coneixement on és
crucial la col·laboració amb Ernest Giralt en el projecte. El doctor Giralt és
líder del grup “Disseny, síntesi i estructura de pèptids i proteïnes” i coordinador
del programa de Química i Farmacologia Molecular de l’IRB Barcelona, amb una llarga
experiència i reconeixement internacional sobre la química de pèptids i
sistemes d’administració de fàrmacs. En el seu laboratori han generat i provat
satisfactòriament una sèrie de pèptids “llançadora” capaços de creuar la
barrera hematoencefàlica. “La nostra principal missió és adaptar les nostres “llançadores”
als vectors carregats amb el gen de la frataxina perquè puguin franquejar primer la barrera
hematoencefàlica i introduir-se després en el nucli de les cèl·lules del
sistema nerviós”, indica Meritxell Teixidó, investigadora associada de l’IRB i
responsable d’aquesta línia de recerca.
El treball conjunt s’inicia aquest novembre de 2013 amb
un termini de tres anys. En aquest temps, l’equip de científics espera tenir enllestida
la prova de concepte que permeti saltar
de la ciència bàsica de laboratori a proves pre-clíniques amb models animals més
sofisticats i avançar cap a una teràpia gènica per a l’Atàxia de Friedreich.
Per a més informació:
Sònia Armengou
Oficina de Premsa
Institut de Recerca Biomèdica (IRB Barcelona)
93 403 72 55 / 618 294 070
Més informació sobre el projecte i gestió dels donatius:
Plataforma Genefa: http://www.genefa.org/
Pacientes y científicos se alían para combatir la Ataxia de Friedreich
Pacientes y científicos se alían para combatir laAtaxia de Friedreich
·
Afectados y
familiares unidos en una plataforma, dos asociaciones de pacientes y dos
centros de investigación biomédica se unen en la lucha contra esta enfermedad neurológica
hereditaria que a día de hoy no tiene cura.
·
Científicos
del Centro de Biología Molecular Severo Ochoa de Madrid y del IRB Barcelona desarrollarán
un proyecto de terapia génica consistente en introducir en las células del
cuerpo una copia correcta del gen defectuoso que causa la enfermedad.
·
La Ataxia de
Friedreich afecta a dos personas por cada 100.000 habitantes de media,
únicamente de origen europeo (caucasianos). En España la incidencia es mayor: se
estima en 4,6 casos por cada 100.000 individuos.
Barcelona,
jueves 14 de noviembre de 2013.- La
Federación de Ataxias de España (FEDAES) en representación de la plataforma
GENEFA para la cura de la Ataxia de Friedreich, la asociación Babel Family para
la investigación biomédica de la Ataxia de Friedreich, el Centro de Biología
Molecular Severo Ochoa (CMBSO) y el Instituto de Investigación Biomédica (IRB
Barcelona) han firmado un convenio a través del cual dichas asociaciones de
pacientes y afectados financiarán con donaciones y durante tres años un
proyecto de investigación para atajar la Ataxia de Friedreich.
La Ataxia de Friedreich es una enfermedad
degenerativa rara del sistema nervioso que afecta a la coordinación, equilibrio
y movimiento. Es una enfermedad monogénica, es decir, causada por la deficiencia
de un único gen. Los afectados han heredado de ambos progenitores el gen de la
frataxina alterado. El objetivo del proyecto es obtener herramientas
moleculares para transportar hasta las células del cuerpo y en especial a un
tipo de neuronas que sufren degeneración y causan la enfermedad, una copia correcta
del gen defectuoso para restaurar los niveles normales de frataxina y detener
los síntomas degenerativos de la enfermedad.
La Plataforma GENEFA lidera la recaudación de los
300.000 euros necesarios para desarrollar este proyecto basado en la terapia
génica. Juan Carlos Baiges, en representación de FEDAES/GENEFA y Babel Family
para este proyecto expresa su ilusión “porque es el primer paso hacia la
obtención de un tratamiento eficaz basado en conocimiento científico básico muy
sólido”. Y añade, “tenemos un proyecto esperanzador por delante que puede
acercarnos a la promesa de una terapia”.
Ernest Giralt del IRB y Javier Díaz-Nido del CBMSO,
colíderes científicos del proyecto subrayan que “es infrecuente que los
investigadores básicos entren en un diálogo directo con los pacientes y este
proyecto es magnífico porque desde el inicio nos recuerda que las respuestas a
las enfermedades surgen desde la investigación básica, el pilar de toda
aplicación futura”.
UN SÓLO GEN
ALTERADO
El médico alemán Nicholas Friedreich la describió
por primera vez hacia 1860. La Ataxia de Friedreich es una enfermedad del
sistema nervioso para la cual no existen ni cura ni tratamientos específicos. Aún
siendo la más común de todos los tipos de ataxia, es una enfermedad rara. Afecta,
aproximadamente, a dos de cada 100.000 personas únicamente entre poblaciones de
origen europeo (caucasianos). En España y Francia los números estimativos de
incidencia son mayores, con una prevalencia de 4,7 casos por 100.000 habitantes,
lo que sugeriría que probablemente la afectación se inició en el área
geográfica de la cordillera Cantábrica.
La Ataxia de Friedreich se manifiesta normalmente entre los 5 y los 25 años de edad, con pérdida progresiva de equilibrio, coordinación y movimiento.
Unos diez años después de los primeros síntomas, los afectados suelen precisar
silla de ruedas. La esperanza
de vida se ve gravemente afectada, sobre todo si hay complicaciones secundarias
serias, como la cardiomiopatía progresiva.
RESTABLECER EL GEN DE LA FRATAXINA CON TERAPIA
GÉNICA
En 1996, un grupo internacional de científicos
identificó la causa de la Ataxia de Friedreich como un defecto en el gen que codifica para la
proteína frataxina, situado en el cromosoma 9. Una de las vías más prometedoras para corregir los bajos niveles de
esta proteína en las células es la terapia génica, tratando de introducir en el
núcleo de las células la copia correcta del gen.
“Tenemos el gen completo aislado, empaquetado en
vectores o “vehículos” transportadores y hemos testado la eficacia en células in
vitro de pacientes. Ahora debemos mejorar el transporte hacia las células del
sistema nervioso y testar la eficiencia en ratones con ataxia” señala Javier
Díaz-Nido, líder del grupo “Reparación neuronal y terapia
molecular en neurodegeneración. Ataxias espinocerebelosas”, del Centro de Biología Molecular Severo Ochoa, centro
mixto de la Universidad Autónoma de Madrid y del CSIC, que también pertenece al
Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER).
El doctor Díaz-Nido es uno de los máximos expertos
mundiales en ataxias, lleva más de diez años estudiando en concreto la Ataxia
de Friedreich a nivel molecular y desarrollando técnicas para convertir la
terapia génica en una realidad más próxima. “En los diez últimos años se han
hecho grandes avances en terapia génica gracias a la contribución a nivel
mundial de cientos de científicos. Falta un último esfuerzo para que sea una
realidad clínica pero empezamos a vislumbrar ya que la terapia génica será una
opción para el tratamiento de estas enfermedades de origen genético”, sostiene Díaz-Nido.
Foto. Transferencia del gen de
la frataxina a neuronas en cultivo. Cultivos de neuronas
granulares de ratón fueron tratados con un vector viral portador del gen de la
frataxina. Se observa en color amarillo la localización de la frataxina
expresada que se encuentra principalmente en las mitocondrias de las neuronas.
SUPERAR LA
BARRERA DEL CEREBRO
El cerebro está protegido por la barrera
hematoencefálica. Dicha barrera dificulta la entrada en el cerebro de
sustancias tóxicas pero también es un muro para los fármacos. Es en esta área
de conocimiento donde es crucial la colaboración con Ernest Giralt en el
proyecto. El doctor Giralt es líder del grupo “Diseño, síntesis y estructura de
péptidos y proteínas” y Coordinador del programa de Química y Farmacología
Molecular del IRB Barcelona, con una larga experiencia y reconocimiento
internacional sobre la química de péptidos y sistemas de administración de
fármacos. En su laboratorio han generado y probado satisfactoriamente una serie
de péptidos “lanzadera” capaces de cruzar la barrera hematoencefálica. “Nuestra
principal misión es adaptar nuestras “lanzaderas” a los vectores cargados con
el gen de la frataxina para que puedan franquear primero la barrera
hematoencefálica e introducirse después en el núcleo de las células del sistema
nervioso”, indica Meritxell Teixidó, investigadora asociada del IRB y
responsable de esta línea de investigación.
El trabajo conjunto se inicia este noviembre de 2013
con un plazo de tres años. En este tiempo, el equipo de científicos espera
tener lista la prueba de concepto que permita saltar de la ciencia básica de
laboratorio a pruebas pre-clínicas con modelos animales más sofisticados y
avanzar hacia una terapia génica para la Ataxia de Friedreich.
Para más
información:
Sònia Armengou
Oficina de Prensa
Institut de Recerca Biomèdica (IRB Barcelona)
93 403 72 55 / 618 294 070
Más información sobre el proyecto y gestión de donativos:
Plataforma Genefa: http://www.genefa.org/
Patients and scientists join forces to tackle Friedreich’s Ataxia
Patients and scientists join forces to tackle Friedreich’s Ataxia
• Patients and their families united in a single platform, two patients’ associations, and two biomedical research centres join forces in the fight against this hereditary neurological disease for which there is still has no cure.
• Scientists at the “Centro de Biología Molecular Severo Ochoa” in Madrid and IRB Barcelona develop a gene therapy project that involves introducing into the body’s cells a correct copy of the defective gene that causes the disease.
• Friedreich’s Ataxia affects approximately 2 in every 100,000 people of European origin (Caucasians). In Spain the incidence of this disease is higher, with an estimated 4.7 cases per 100,000 population.
Barcelona, Thursday 14 November 2013.- The Spanish Federation of Ataxia (FEDAES)—in representation of the GENEFA Platform for a Friedreich's Ataxia cure—, the Babel Family association for biomedical research into Friedreich’s Ataxia, the “Centro de Biología Molecular Severo Ochoa” (CMBSO), and the Institute for Research in Biomedicine (IRB Barcelona) have signed an agreement through which these patients’ associations will fund, by means of donations, a 3-year research project addressing Friedreich’s Ataxia.
Friedreich’s Ataxia is a rare degenerative disease of the nervous system that affects coordination, balance and movement. It is a monogenic disease, that is to say, it is caused by a defect in only one gene. Those affected by this disorder have inherited an altered frataxin gene from both parents. The project aims to develop molecular tools to transport a correct copy of the defective gene to all the cells of the body and particularly to a kind of neuron that undergoes degeneration and causes the disease. This approach seeks to restore the normal levels of frataxin and to stop the manifestation of the degenerative symptoms of the disease.
The GENEFA Platform heads the money-raising campaign to collect the 300,000 euros required to develop this gene therapy project. Juan Carlos Baiges, in representation of FEDAES/GENEFA and the Babel Family for this project, expresses his enthusiasm, “it is the first step towards achieving an effective treatment based on solid basic research knowledge”, and adds, “we have a motivating project ahead that may lead us closer to a treatment.”
Ernest Giralt, at IRB Barcelona, and Javier Díaz-Nido, at CBMSO, scientific co-leaders of the project, stress that, “it is uncommon for basic researchers to have direct contact with patients and this project is fantastic because it reminds us that the solutions to diseases derive from basic research, the cornerstone of future applications.”
A SINGLE ALTERED GENE
The German physician Nicholas Friedreich described the disease for the first time around 1860. Friedreich’s Ataxia is a disease that affects the nervous system and for which there is no cure or specific treatments. Although Friedreich’s Ataxia is the most common kind of ataxia, it is a rare condition. It affects approximately 2 in every 100,000 people of European origin (Caucasians). In Spain and France the incidence of this disease is higher, with a prevalence of 4.7 cases per 100,000 population, suggesting that this disease probably originated in the geographic area of the Cantabrian mountain range.
Friedreich’s Ataxia normally appears before the ages of 5 and 25, causing progressive loss of balance, coordination and movement. About ten years after the onset of the first symptoms, those affected usually become wheelchair-bound. Life expectancy is severely reduced, above all when there are serious secondary complications, such as progressive cardiomyopathy.
RESTORING THE FRATAXIN GENE THROUGH GENE THERAPY
In 1996, an international group of scientists identified the cause of Friedreich’s Ataxia as a defect in a gene that codes for the protein frataxin, located in chromosome 9. One of the most promising strategies to correct the low cellular levels of this protein is through gene therapy, by attempting to introduce a correct copy of the gene into cell nuclei.
“We have fully isolated the gene and packaged it in transport vectors or “vehicles” and we have tested its efficiency in patient cells in vitro. Now we have to improve transport to the cells of the nervous system and test the efficiency in mice with ataxia,” explains Javier Díaz-Nido, head of the group “Neuronal repair and molecular therapy in neurodegeneration. Spinocerebellar Ataxias” at the CBMSO, a centre comprising the “Universidad Autónoma de Madrid” and the CSIC, and that is also a member of the Centre for Biomedical Network Research on Rare Diseases (CIBERER).
The physician Díaz-Nido is a world authority on ataxias, having devoted more than ten years to studying Friedreich’s Ataxia at the molecular level and developing techniques to make gene therapy a reality. “The last ten years have witnessed great advances in gene therapy thanks to the contributions of hundreds of scientists worldwide. The last step is still pending for it to become a clinical option, but we are beginning to envisage that gene therapy will be possible for the treatment of such diseases of genetic origin,” maintains Díaz-Nido.
OVERCOMING THE BRAIN BARRIER
The brain is protected by the blood-brain barrier. This barrier serves to prevent toxic substances from entering the brain but it also obstructs the entry of therapeutic drugs. In this regard, collaboration with Ernest Giralt is critical. Prof. Giralt, head of the group “Design, synthesis and structure of peptides and proteins” and coordinator of the Chemistry and Molecular Pharmacology Programme at IRB Barcelona, has extensive experience and his expertise in peptide chemistry and drug delivery systems is internationally recognised. His laboratory has generated and satisfactorily tested a set of shuttle peptides able to cross the blood-brain barrier. “Our main goal is to adapt our shuttles to the vectors carrying the frataxin gene to enable them to cross the blood-brain barrier and then enter the nuclei of the cells of the nervous system,” explains Meritxell Teixidó, associate researcher at IRB Barcelona and responsible for this research line.
The joint research project begins in November 2013 and will last for three years. During this time, the team of scientists hopes to prepare the proof-of-concept that will allow the leap from basic lab research to preclinical trials in more sophisticated animal models and advancement towards a gene therapy for Friedreich’s Ataxia.
For more information:
Sònia Armengou
Oficina de Prensa
Institut de Recerca Biomèdica (IRB Barcelona)
93 403 72 55 / 618 294 070
Fore more information on the project: “Plataforma Genefa”: http://www.genefa.org/home/
• Patients and their families united in a single platform, two patients’ associations, and two biomedical research centres join forces in the fight against this hereditary neurological disease for which there is still has no cure.
• Scientists at the “Centro de Biología Molecular Severo Ochoa” in Madrid and IRB Barcelona develop a gene therapy project that involves introducing into the body’s cells a correct copy of the defective gene that causes the disease.
• Friedreich’s Ataxia affects approximately 2 in every 100,000 people of European origin (Caucasians). In Spain the incidence of this disease is higher, with an estimated 4.7 cases per 100,000 population.
Barcelona, Thursday 14 November 2013.- The Spanish Federation of Ataxia (FEDAES)—in representation of the GENEFA Platform for a Friedreich's Ataxia cure—, the Babel Family association for biomedical research into Friedreich’s Ataxia, the “Centro de Biología Molecular Severo Ochoa” (CMBSO), and the Institute for Research in Biomedicine (IRB Barcelona) have signed an agreement through which these patients’ associations will fund, by means of donations, a 3-year research project addressing Friedreich’s Ataxia.
Friedreich’s Ataxia is a rare degenerative disease of the nervous system that affects coordination, balance and movement. It is a monogenic disease, that is to say, it is caused by a defect in only one gene. Those affected by this disorder have inherited an altered frataxin gene from both parents. The project aims to develop molecular tools to transport a correct copy of the defective gene to all the cells of the body and particularly to a kind of neuron that undergoes degeneration and causes the disease. This approach seeks to restore the normal levels of frataxin and to stop the manifestation of the degenerative symptoms of the disease.
The GENEFA Platform heads the money-raising campaign to collect the 300,000 euros required to develop this gene therapy project. Juan Carlos Baiges, in representation of FEDAES/GENEFA and the Babel Family for this project, expresses his enthusiasm, “it is the first step towards achieving an effective treatment based on solid basic research knowledge”, and adds, “we have a motivating project ahead that may lead us closer to a treatment.”
Ernest Giralt, at IRB Barcelona, and Javier Díaz-Nido, at CBMSO, scientific co-leaders of the project, stress that, “it is uncommon for basic researchers to have direct contact with patients and this project is fantastic because it reminds us that the solutions to diseases derive from basic research, the cornerstone of future applications.”
A SINGLE ALTERED GENE
The German physician Nicholas Friedreich described the disease for the first time around 1860. Friedreich’s Ataxia is a disease that affects the nervous system and for which there is no cure or specific treatments. Although Friedreich’s Ataxia is the most common kind of ataxia, it is a rare condition. It affects approximately 2 in every 100,000 people of European origin (Caucasians). In Spain and France the incidence of this disease is higher, with a prevalence of 4.7 cases per 100,000 population, suggesting that this disease probably originated in the geographic area of the Cantabrian mountain range.
Friedreich’s Ataxia normally appears before the ages of 5 and 25, causing progressive loss of balance, coordination and movement. About ten years after the onset of the first symptoms, those affected usually become wheelchair-bound. Life expectancy is severely reduced, above all when there are serious secondary complications, such as progressive cardiomyopathy.
RESTORING THE FRATAXIN GENE THROUGH GENE THERAPY
In 1996, an international group of scientists identified the cause of Friedreich’s Ataxia as a defect in a gene that codes for the protein frataxin, located in chromosome 9. One of the most promising strategies to correct the low cellular levels of this protein is through gene therapy, by attempting to introduce a correct copy of the gene into cell nuclei.
“We have fully isolated the gene and packaged it in transport vectors or “vehicles” and we have tested its efficiency in patient cells in vitro. Now we have to improve transport to the cells of the nervous system and test the efficiency in mice with ataxia,” explains Javier Díaz-Nido, head of the group “Neuronal repair and molecular therapy in neurodegeneration. Spinocerebellar Ataxias” at the CBMSO, a centre comprising the “Universidad Autónoma de Madrid” and the CSIC, and that is also a member of the Centre for Biomedical Network Research on Rare Diseases (CIBERER).
The physician Díaz-Nido is a world authority on ataxias, having devoted more than ten years to studying Friedreich’s Ataxia at the molecular level and developing techniques to make gene therapy a reality. “The last ten years have witnessed great advances in gene therapy thanks to the contributions of hundreds of scientists worldwide. The last step is still pending for it to become a clinical option, but we are beginning to envisage that gene therapy will be possible for the treatment of such diseases of genetic origin,” maintains Díaz-Nido.
OVERCOMING THE BRAIN BARRIER
The brain is protected by the blood-brain barrier. This barrier serves to prevent toxic substances from entering the brain but it also obstructs the entry of therapeutic drugs. In this regard, collaboration with Ernest Giralt is critical. Prof. Giralt, head of the group “Design, synthesis and structure of peptides and proteins” and coordinator of the Chemistry and Molecular Pharmacology Programme at IRB Barcelona, has extensive experience and his expertise in peptide chemistry and drug delivery systems is internationally recognised. His laboratory has generated and satisfactorily tested a set of shuttle peptides able to cross the blood-brain barrier. “Our main goal is to adapt our shuttles to the vectors carrying the frataxin gene to enable them to cross the blood-brain barrier and then enter the nuclei of the cells of the nervous system,” explains Meritxell Teixidó, associate researcher at IRB Barcelona and responsible for this research line.
The joint research project begins in November 2013 and will last for three years. During this time, the team of scientists hopes to prepare the proof-of-concept that will allow the leap from basic lab research to preclinical trials in more sophisticated animal models and advancement towards a gene therapy for Friedreich’s Ataxia.
For more information:
Sònia Armengou
Oficina de Prensa
Institut de Recerca Biomèdica (IRB Barcelona)
93 403 72 55 / 618 294 070
Fore more information on the project: “Plataforma Genefa”: http://www.genefa.org/home/
Arrhythmias in Patients With Neurologic Disorders
Arrhythmias in Patients With Neurologic Disorders. William J. Groh; Cardiac Electrophysiology: From Cell to Bedside (Sixth Edition), 2014, Pages 993-999
Keywords: Friedreich's Ataxia, Muscular Dystrophies, Type 1 and Type 2 Myotonic Dystrophies, Emery-Dreifuss Muscular Dystrophies and Associated Disorders, Limb-Girdle Muscular Dystrophies, Facioscapulohumeral Muscular Dystrophy, Periodic Paralyses, Mitochondrial Disorders, Guillain-Barré Syndrome, Myasthenia Gravis, Epilepsy, Acute Cerebrovascular Disease.
Keywords: Friedreich's Ataxia, Muscular Dystrophies, Type 1 and Type 2 Myotonic Dystrophies, Emery-Dreifuss Muscular Dystrophies and Associated Disorders, Limb-Girdle Muscular Dystrophies, Facioscapulohumeral Muscular Dystrophy, Periodic Paralyses, Mitochondrial Disorders, Guillain-Barré Syndrome, Myasthenia Gravis, Epilepsy, Acute Cerebrovascular Disease.
Terapia génica para la ataxia de Friedreich basada en la modificación de vectores virales y no virales para mejorar su distribución a través de la barrera hematoencefálica.
Proyecto de investigación
Terapia génica para la ataxia de Friedreich basada en la modificación de vectores virales y no virales para mejorar su distribución a través de la barrera hematoencefálica.
Investigadores Principales:
Javier Díaz-Nido
Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid; CIBER de Enfermedades Raras (CIBERER).
Ernest Giralt
IRB Barcelona; Universitat de Barcelona.
Antecedentes y estado actual de la investigación:
La terapia génica constituye una vía prometedora para el tratamiento de enfermedades monogénicas como la ataxia de Friedreich (AF). En la actualidad existen distintos grupos de investigación trabajando con distintos vectores virales (adenoasociados, lentivirales y herpesvirales) con el objetivo de desarrollar una terapia génica para la AF.
Los vectores herpesvirales destacan por su capacidad para acomodar el gen completo de la frataxina (con todas sus secuencias reguladoras). El uso del gen completo presenta importantes ventajas (frente al uso de minigenes controlados por promotores exógenos) ya que se asegura una expresión fisiológica del gen (también en respuesta a diferentes señales y estados fisiológicos), así como un correcto y completo procesamiento del RNA transcrito (permitiendo la expresión de todas las isoformas de la frataxina de una manera fisiológica).
El reto más importante para asegurar una buena eficiencia de la terapia génica consiste en asegurar una amplia distribución del vector portador del gen de la frataxina a todas las regiones del sistema nervioso que están afectadas (de manera muy particular a los ganglios espinales, médula espinal y cerebelo).
En este contexto el desarrollo de “vehículos” portadores del gen de la frataxina y que sean capaces de atravesar la barrera hematoencefálica constituiría un avance fundamental para asegurar una amplia distribución del gen.
La barrera hematoencefálica es una barrera muy selectiva que impide el paso de la mayoría de las moléculas de la sangre al sistema nervioso. Sin embargo, se ha demostrado recientemente que algunos péptidos (denominados “lanzaderas”) pueden atravesar dicha barrera así como permitir el transporte de “cargos” con distintas propiedades fisicoquímicas. Así, por ejemplo, nanopartículas de oro recubiertas con un péptido capaz de interaccionar con el receptor de la transferrina son capaces de atravesar la barrera hematoencefálica.
Nuestra intención con este proyecto es utilizar estos péptidos “lanzadera”, junto con otros péptidos funcionales, para modificar los vectores herpesvirales, así como desarrollar nuevos “vehículos” basados en nanopartículas sintéticas, que sean capaces de distribuir de una manera eficiente el gen de la frataxina en el sistema nervioso.
Resumen del proyecto:
El objetivo principal de este proyecto es la generación de nuevas herramientas moleculares, incluyendo vectores virales modificados y nanopartículas sintéticas, que puedan ser transportadas de manera activa y selectiva a través de la barrera hematoencefálica de manera que resulten eficientes para la terapia génica de la ataxia de Friedreich (AF).
Este proyecto pretende avanzar en la distribución de genes al sistema nervioso mediante la combinación de vectores ya conocidos (como son los vectores herpesvirales y las nanopartículas sintéticas de PLGA-PEG) con nuevos péptidos que pueden atravesar la barrera hematoencefálica actuando como lanzaderas (BBB shuttles), péptidos “localizadores” que dirigen los vectores a células diana específicas (HPs, del inglés “homing peptides”), y péptidos capaces de entrar dentro de las células (denominados CPPs, del inglés “cell penetrating peptides”).
Más específicamente, nuestro proyecto pretende transportar el ADN que codifica la frataxina (cuya deficiencia es la causa de la enfermedad) utilizando vectores virales y no-virales recubiertos de los péptidos lanzadera (BBB shuttles) que pueden atravesar la barrera hematoencefálica, así como de péptidos directores (HPs) y de péptidos capaces de entrar dentro de las células (CPPs).
Los vectores herpesvirales derivados del virus HSV1 ya han demostrado ser muy eficaces en la transferencia de genes a neuronas, además de poseer una gran capacidad que les permite transportar genes completos con todas sus secuencias reguladoras, pero carecen de la capacidad de atravesar la barrera hematoencefálica en condiciones normales. La modificación de estos vectores virales con péptidos lanzadera puede permitir su transporte a través de la barrera hematoencefálica y así mejorar de manera muy importante su distribución en el sistema nervioso.
Las nanopartículas sintéticas de PLGA-PEG presentan algunas ventajas importantes, ya que son fáciles de preparar a gran escala y tienen generalmente menos efectos pro-inflamatorios que las partículas virales. De hecho, estas nanopartículas sintéticas de PLGA-PEG son aceptadas por las autoridades reguladoras como un material seguro y están siendo utilizadas como vehículos de suministro de fármacos. Sin embargo, para convertirse en eficientes vectores de transferencia génica, estas nanopartículas deben adquirir nuevas funcionalidades. La decoración de la superficie de estas nanopartículas sintéticas con varios péptidos que actúen como péptidos lanzadera (BBB shuttles), HPs y CPPs, podría permitir una eficiente distribución de las mismas dentro del sistema nervioso.
En este proyecto evaluaremos la eficiencia de la transferencia génica, la posible toxicidad y la eficacia terapéutica de los diferentes vectores modificados (virales y no –virales) en modelos de células humanas y en ratones.
Para alcanzar este objetivo, el proyecto reúne dos grupos de investigación que aportan conocimientos y tecnologías complementarias. El Grupo del Dr. Diaz-Nido en el Centro de Biología Molecular Severo Ochoa tiene experiencia en modelos experimentales y estrategias de terapia molecular para enfermedades neurodegenerativas con un énfasis en la ataxia de Friedreich. El Grupo del Dr. Giralt en el IRB Barcelona tiene una experiencia en el campo de la química de péptidos y su aplicación a la biomedicina y es un referente internacional en este campo. De gran importancia para este proyecto son sus desarrollos recientes en los péptidos “lanzadera” y en los sistemas de administración de fármacos.