Hongting Zhao, Huihui Li, Shuangying Hao, Jiping Chen, Jing Wu, Chuanhui Song, Meng Zhang, Tong Qiao & Kuanyu Li; Scientific Reports 7, Article number: 9840 (2017) doi:10.1038/s41598-017-10320-2
We demonstrated that treatment with the mitochondrion-targeted peptide SS-31 reduced frataxin deficiency-induced oxidative stress in lymphoblasts and fibroblasts derived from patients. Interestingly, SS-31 treatment translationally upregulated the protein level of frataxin in a dose-dependent manner. Furthermore, SS-31 treatment increased the enzymatic activities of the iron-sulphur enzymes, including aconitase and complex II and III of the respiratory chain. Further evaluation of the quality of mitochondria showed that mitochondrial membrane potential, ATP content, NAD+/NADH, and the morphology of mitochondria all improved. Our results suggest that SS-31 might potentially be a new drug for the early treatment of Friedreich ataxia.
In summary, SS-31 treatment improves the morphology and function of mitochondria in the FRDA patient-derived cells by upregulating the expression of FXN at the translational level and reducing oxidative stress. In addition, SS-31 treatment significantly enhances the ability of patient-derived cells to withstand challenges from exogenous oxidative stress. The mechanism of the translational upregulation in FXN expression by mitochondrion-targeted SS-31 needs to be further addressed. However, improvement in the quality of mitochondria in FRDA patient–derived cells by SS-31 treatment appears promising. It is reasonable to suggest that SS-31 might potentially be a new drug for the early treatment of FRDA.