Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, et al. (2018) Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS ONE 13(8): e0201369. https://doi.org/10.1371/journal.pone.0201369
Friedreich Ataxia and close related scientific news. Topics related to rare diseases.
Tuesday, August 14, 2018
Genetic basis of hypertrophic cardiomyopathy in children
tefan Rupp, Moataz Felimban, Anne Schänzer, Dietmar Schranz, Christoph Marschall, Martin Zenker, Thushiha Logeswaran, Christoph Neuhäuser, Josef Thul, Christian Jux, Andreas Hahn; Clin Res Cardiol (2018). doi:10.1007/s00392-018-1354-8
42 patients with the diagnoses of HCM made before age 18 years were treated in our center from 2000 to 2016. Genetic analysis was performed in 36 subjects, a genetic defect was detected in 29 (78%) patients. 15 individuals (42%) had pathogenic variants in genes encoding sarcomere proteins, and 5 (14%) in genes coding for components of the RAS/MAPK signaling pathway. 4 subjects (11%) had mutations in the GAA gene (Pompe disease), and 3 (8%) had Frataxin repeat expansions (Friedreich’s ataxia). One patient each showed a mutation in BAG3 and LMNA. Discussion of unsolved HCM cases after performing next-generation sequencing (28 genes) in an interdisciplinary board unraveled the genetic cause in 9 subjects (25%).
A definite genetic diagnosis can be reached in nearly 80% with HCM of childhood onset. Next-generation sequencing in conjunction with a multidisciplinary cooperation can enhance the diagnostic yield substantially. This may be important for risk stratification, treatment planning and genetic counseling.
42 patients with the diagnoses of HCM made before age 18 years were treated in our center from 2000 to 2016. Genetic analysis was performed in 36 subjects, a genetic defect was detected in 29 (78%) patients. 15 individuals (42%) had pathogenic variants in genes encoding sarcomere proteins, and 5 (14%) in genes coding for components of the RAS/MAPK signaling pathway. 4 subjects (11%) had mutations in the GAA gene (Pompe disease), and 3 (8%) had Frataxin repeat expansions (Friedreich’s ataxia). One patient each showed a mutation in BAG3 and LMNA. Discussion of unsolved HCM cases after performing next-generation sequencing (28 genes) in an interdisciplinary board unraveled the genetic cause in 9 subjects (25%).
A definite genetic diagnosis can be reached in nearly 80% with HCM of childhood onset. Next-generation sequencing in conjunction with a multidisciplinary cooperation can enhance the diagnostic yield substantially. This may be important for risk stratification, treatment planning and genetic counseling.