Janna Krahe, Ferdinand Binkofski, Jörg B. Schulz, Kathrin Reetz, Sandro Romanzetti,; Neuroscience & Biobehavioral Reviews, 2019, doi:10.1016/j.neubiorev.2019.12.019.
Magnetic resonance spectroscopy (MRS) is applied to investigate the neurochemical profiles of degenerative hereditary ataxias. This meta-analysis provides a quantitative review and reappraisal of MRS findings in spinocerebellar ataxias (SCA) and Friedreich ataxia (FA) available to date. From each study, changes in N-acetyl aspartate (NAA), choline-containing compounds (Cho) and myo-Inositol (mI) ratios to total creatine (Cr) were calculated for groups of patients (1499 patients in total: SCA1 = 223, SCA2 = 298, SCA3 = 711, SCA6 = 165, and FA = 102) relative to their own control group, mostly in cerebellum and pons. SCA1, 2, 3, 6, and FA patients showed overall decreased NAA/Cr compared to controls. Decreased Cho/Cr was visible in SCA1, 2, and 3 and elevated mI/Cr in SCA2 patients in cerebellum. In SCA6 and FA Cho/Cr and mI/Cr did not differ with respect to controls but SCA6 patients indicated higher Cho/Cr compared to SCA1 patients in cerebellum. SCA2 subjects showed the lowest NAA/Cr and Cho/Cr in cerebellum and the highest mI/Cr compared to controls and other genotypes, and therefore the most promising results for a potential biomarker.