S. Chiang, M.L.H. Huang, K.C. Park, D.R. Richardson, Free Radical Biology and Medicine, 2020, doi.org/10.1016/j.freeradbiomed.2020.07.019.
Considering FA, which is due to the decreased expression of the mitochondrial protein, frataxin, this iron accumulation does not occur within protective storage proteins such as mitochondrial ferritin. Instead, it forms unbound biomineral aggregates composed of high spin iron(III), phosphorous and sulfur, which probably contributes to the observed redox stress. There is also a dysregulated response to the ensuing redox assault, as the master regulator of oxidative stress, nuclear factor erythroid 2-related factor-2 (Nrf2), demonstrates marked down-regulation. The dysfunctional response of Nrf2 in FA is due to multiple mechanisms including: (1) up-regulation of Keap1 that is involved in Nrf2 degradation; (2) activation of the nuclear Nrf2 export/degradation machinery via glycogen synthase kinase-3β (Gsk3β) signaling; and (3) inhibited nuclear translocation of Nrf2. More recently, increased microRNA (miRNA) 144 expression has been demonstrated to down-regulate Nrf2 in several disease states, including an animal model of FA. Other miRNAs have also demonstrated to be dysregulated upon frataxin depletion in vivo in humans and animal models of FA. Collectively, frataxin depletion results in multiple, complex responses that lead to detrimental redox effects that could contribute to the mechanisms involved in the pathogenesis of FA.