Neurodegenerative diseases often affect speech. Speech acoustics can be used as objective clinical markers of pathology. Previous investigations of pathological speech have primarily compared controls with one specific condition and excluded comorbidities. We broaden the utility of speech markers by examining how multiple acoustic features can delineate diseases. We used supervised machine learning with gradient boosting (CatBoost) to differentiate healthy speech and speech from people with multiple sclerosis or Friedreich ataxia.