The project began not with cancer, but with a rare, neurodegenerative disease without a cure, Friedreich ataxia. Five years ago, Erwin, then a graduate student at the University of Wisconsin-Madison, was exploring the genetic underpinnings of Friedreich ataxia in hopes of filling the therapeutic void.
Erwin knew that DNA mutations called repeat expansions cause Friedreich ataxia, along with dozens of other serious conditions, many neurological.
Repeat expansions are stretches of DNA that erroneously repeat themselves dozens to thousands of times in the genome.
Testing the molecule in cells from a Friedreich ataxia patient, Erwin saw that Syn-TEF1 successfully targeted the repeat expansion, helping RNA polymerase move through it to transcribe the FXN gene, bringing frataxin to normal levels. Due to its success in cells, researchers are now testing the safety and dosage of a version of Syn-TEF1 in Friedreich ataxia patients.