Saturday, November 24, 2018

Paradoxical disruption of Nrf2 signaling despite mitochondrial iron driven oxidative stress in Friedreich’s ataxia cardiomyopathy

Michael Huang, Amy Anzovino, Shannon Chiang, Bronwyn Brown, Clare Hawkins, Des Richardson. Free Radical Biology and Medicine, Volume 128, Supplement 1, 2018, Page S131, doi.org/10.1016/j.freeradbiomed.2018.10.346

Cardiomyopathy is the leading cause of mortality for the most prevalent inherited ataxia, Friedreich’s ataxia (FA). Deficient expression of the mitochondrial protein frataxin that is crucial for mitochondrial iron metabolism is the cause of FA, which exhibits marked mitochondrial Fe accumulation. Our studies using a conditional cardiac frataxin knockout (KO) mouse that mirrors FA cardiomyopathy have shown frataxin deletion leads to pronounced trafficking of cardiac iron from the cytosol to the mitochondrion, leading to a cytosolic iron-deficiency and mitochondrial iron accumulation in the form of non-protein-bound, biomineral iron aggregates. The ensuing oxidative stress is likely a key contributor to FA pathology. The transcription factor, nuclear factor E2-related factor 2 (Nrf2), is the master regulator of cellular antioxidant response. In the frataxin KO mouse, our studies demonstrated increased protein and GSH oxidation in the KO relative to wild-type (WT) littermates. Despite this, we found paradoxical decreases in total and nuclear Nrf2 protein and an increase in its inhibitor, Keap1, which mediates Nrf2 degradation in the cytosol. Moreover, a mechanism involving activation of the nuclear Nrf2 export/degradation machinery via Gsk3β-signaling was found in the KO heart. This is evident by: (i) increased Gsk3β activation; (ii) increased Fyn-mediated nuclear Nrf2 export; and (iii) increased expression of β-TrCP that is involved in Nrf2 degradation. Furthermore, a corresponding decrease in Nrf2-DNA-binding activity and a general decrease in Nrf2-target mRNA was observed in KO heart. Collectively, despite marked mitochondrial iron accumulation in FA cardiomyopathy, Nrf2 activity was disrupt via two mechanisms: increased Keap1 that decreases cytosolic Nrf2, and the activation of Gsk3β-signaling that decreases nuclear Nrf2.

Del deseo a la realidad: la edición genética (aún) no está preparada para tratar a pacientes

SINC, la ciencia es noticia (17 noviembre 2018). Lluís Montoliu, es investigador científico del Centro Nacional de Biotecnología (CNB-CSIC) y Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII), además de miembro del Comité de Ética del CSIC.

Las terapias génicas basadas en CRISPR para curar enfermedades todavía tardarán en llegar. Quizás no sea este el titular que quisiéramos leer, pero es el mensaje que hay que repetir para no generar falsas expectativas sobre esta potente herramienta de corta-pega genético.

Hoy en día se están desarrollando múltiples variantes de la técnica CRISPR, a cual más innovadora e imaginativa. Algunas de ellas son extremadamente prometedoras, como los editores de bases, una evolución de las herramientas CRISPR capaz de cambiar nucleótidos concretos del genoma sin necesidad de cortarlo. Pero todas ellas conllevan todavía riesgos inaceptables, tanto en seguridad como en eficacia, para saltar al hospital.

Son métodos sofisticados que nos permiten abordar experimentos en el laboratorio como nunca antes habíamos podido hacerlo, pero que todavía no pueden trasladarse a la clínica. Necesitan de mucho más trabajo, mucha más investigación en el laboratorio.