Caridad Pontes, Juan Manuel Fontanet, Roser Vives, Aranzazu Sancho, Mònica Gómez-Valent, José Ríos, Rosa Morros, Jorge Martinalbo, Martin Posch, Armin Koch, Kit Roes, Katrien Oude Rengerink, Josep Torrent-Farnell and Ferran Torres; Orphanet Journal of Rare Diseases 2018 13:206 doi:10.1186/s13023-018-0926-z
The regulatory evidence supporting OMP authorization showed substantial uncertainties, including weak protection against errors, substantial use of designs unsuited for conclusions on causality, use of intermediate variables, lack of a priorism and insufficient safety data to quantify risks of relevant magnitude. Grouping medical conditions based on clinical features and their methodological requirements may facilitate specific methodological and regulatory recommendations for the study of OMP to strengthen the evidence base.
Friday, November 16, 2018
Plasma Markers of Neurodegeneration Are Raised in Friedreich’s Ataxia
Zeitlberger Anna M., Thomas-Black Gilbert, Garcia-Moreno Hector, Foiani Martha, Heslegrave Amanda J., Zetterberg Henrik, Giunti Paola; Frontiers in Cellular Neuroscience 2018, 12 366, DOI=10.3389/fncel.2018.00366
This study provides the first assessment of plasma markers of neurodegeneration in FRDA, illustrating that NfL, GFAP, and UCHL1 are significantly raised in FRDA compared to aged-matched control. These observations may serve as the basis of further exploration of these brain-derived proteins as promising biomarkers in FRDA. In addition, we show for the first time in vivo an increase of GFAP reflecting astrocyte activation. This is confirmatory of in vitro studies suggesting a role of astrocytes in FRDA pathology. Finally, UCHL1 increase may reflect non-specific neuronal damage or alterations in the UPP. Future studies are needed to confirm our findings and determine whether, when applied to more heterogeneous cohorts, they serve as useful markers of disease severity.
This study provides the first assessment of plasma markers of neurodegeneration in FRDA, illustrating that NfL, GFAP, and UCHL1 are significantly raised in FRDA compared to aged-matched control. These observations may serve as the basis of further exploration of these brain-derived proteins as promising biomarkers in FRDA. In addition, we show for the first time in vivo an increase of GFAP reflecting astrocyte activation. This is confirmatory of in vitro studies suggesting a role of astrocytes in FRDA pathology. Finally, UCHL1 increase may reflect non-specific neuronal damage or alterations in the UPP. Future studies are needed to confirm our findings and determine whether, when applied to more heterogeneous cohorts, they serve as useful markers of disease severity.
Subscribe to:
Posts (Atom)