Thursday, May 16, 2024

Long non-coding RNA TUG1 is down-regulated in Friedreich’s ataxia

Mert Koka, Hui Li, Rumana Akther, Susan Perlman, Darice Wong, Brent L Fogel, David R Lynch, Vijayendran Chandran, Long non-coding RNA TUG1 is down-regulated in Friedreich’s ataxia, Brain Communications, 2024;, fcae170, doi:10.1093/braincomms/fcae170 

This study identifies TUG1 as a potential blood-based biomarker for FRDA, showing consistent expression variance in human and mouse tissues related to disease severity and key FRDA pathways. It correlates with frataxin levels, indicating its promise as an early, non-invasive marker. TUG1 holds potential for FRDA monitoring and therapeutic development, meriting additional research.


Characterization of clinical serum cardiac biomarker levels in individuals with Friedreich ataxia

David R. Lynch, Sonal Sharma, Patrick Hearle, Nathaniel Greeley, Katherine Gunther, Medina Keita, Cassandra Strawser, Lauren Hauser, Courtney Park, Kimberly Schadt, Kimberly Y. Lin, Characterization of clinical serum cardiac biomarker levels in individuals with Friedreich ataxia, Journal of the Neurological Sciences, 2024, 123053, doi:10.1016/j.jns.2024.123053 

In subjects with multiple assessments, mean unprovoked troponin I levels decreased slightly over time. The presence of abnormal troponin I values and their levels were predicted by echocardiographic measures of hypertrophy. In addition, troponin I levels predicted long-term markers of clinical cardiac dysfunction over time to a modest degree. Consequently, troponin I values provide a marker of hypertrophy but only a minimally predictive biomarker for later cardiac manifestations of disease such as systolic dysfunction or arrhythmia.