Amelie Hu, Myriam Rai, Simona Donatello, Massimo Pandolfo; bioRxiv 221242; doi:10.1101/221242 (This article is a preprint and has not been peer-reviewed)
We generated PSNs from induced pluripotent stem cells (iPSCs) from FRDA patients and showed that they recapitulate the key pathogenic events in FRDA, including low FXN levels, loss of Fe-S proteins and impaired antioxidant responses. We also showed that FXN deficiency in these cells may be partially corrected by a pimelic benzamide histone deacetylase inhibitor, a class of potential therapeutics for FRDA. We generated and validated a cellular model of the most vulnerable neurons in FRDA, which can be used for further studies on pathogenesis and treatment approaches.
Oxidative stress and loss of Fe-S proteins in Friedreich ataxia induced pluripotent stem cell-derived PSNs can be reversed by restoring FXN expression with a benzamide HDAC inhibitor.