Nina Xie, Yafang Zhou, Qiying Sun, and Beisha Tang, Stem Cells International, vol. 2018, Article ID 7834175, 12 pages, 2018. doi:10.1155/2018/7834175.
Other representative candidates may include the Rett syndrome, Huntington’s disease, and Friedreich ataxia, where dCas9-epieffector complex may be harnessed to restore or repress the responsible gene to cure the disease.
In conclusion, all of the studies described above indicated that CRISPR/Cas9-mediated epigenome editing holds a great promise for epigenetic studies and therapeutics. However, there are still some limitations to be scrutinized. First of all, in terms of basic science studies, although most studies claimed high specificity in their experiments, however, the high specificity usually is the result of repeated optimization. A precise model that could predict deleterious off-target effects during the experiment design stage is still lacking. In addition, although transactivation or repression effects on multiple genes were well documented in publications, mechanisms underlying the phenomenon were not clear. Epigenetic mark profiling on epigenome scale was not sufficient. Local CHIP-seq data usually only focused on the characterization of one or few histone marks. Theoretically, we hope that epigenome editing could achieve targeted gene regulation by changing epigenetic marks specifically and freely according to our wills. To achieve this goal, high specificity and clarified mechanisms are the prerequisite. Therefore, more thorough off-target event assessments and more studies focusing on mechanisms underlying epigenome editing are needed.
Moreover, in terms of clinical applications, several issues need to be addressed prior to successful clinical translation. Firstly, the endurance of gene activation or a repression effect mediated by CRISPR/Cas9 remains to be undetermined. It has been thought that epigenome-editing-induced gene activation or repression is short-term. On the contrary, there was also evidence showing that a gene silencing effect mediated by the hit-and-run epigenome editing strategy could also be long-term and inheritable. A short-term effect is more suitable for antagonizing acute pathogenic factor exposure and the transdifferentiation process. However, for treating chronic diseases, a long-term effect is expected. Additionally, a safer and efficient delivery method should be developed [92]. Adeno-associated virus (AAV) vectors have been the prevailing delivery method for some time. By tagging a synthetic surface peptide, splitting the Cas9 protein or using its smaller orthologues, and choosing a suitable administration route, researchers significantly improved the packaging capacity and delivery efficiency of AAV vectors. However, for clinical applications, more optimization is required. The immunogenicity of AAV vectors, dCas9 proteins, and guide RNAs should be determined precisely. The off-target effects of AAV vectors or dCas9-epieffector complex should be minimized as much as possible to ensure clinical safety.
Novel Epigenetic Techniques Provided by the CRISPR/Cas9 System.