This paper demonstrates that frataxin deficiency causes excessive mitochondrial fragmentation that is dependent upon Drp1 activity in Friedreich ataxia cellular models. Drp1 inhibition by the small peptide TAT-P110 reverses mitochondrial fragmentation but also decreases ATP levels in frataxin-knockdown fibroblasts and FRDA patient fibroblasts, suggesting that fragmentation may provide a homeostatic pathway for maintaining cellular ATP levels. The cardiolipin-stabilizing compound SS-31 similarly reverses fragmentation through a Drp1-dependent mechanism, but it does not affect ATP levels. The combination of TAT-P110 and SS-31 does not affect FRDA patient fibroblasts differently from SS-31 alone, suggesting that the two drugs act through the same pathway but differ in their ability to alter mitochondrial homeostasis. In approaching potential therapeutic strategies for FRDA, an important criterion for compounds that improve bioenergetics should be to do so without impairing the homeostatic response of mitochondrial fragmentation.
Friday, May 7, 2021
Drp1-dependent peptide reverse mitochondrial fragmentation, a homeostatic response in Friedreich ataxia
Johnson J, Mercado-AyĆ³n E, Clark E, Lynch D, Lin H.; Pharmacol Res Perspect. 2021 May;9(3):e00755. doi: 10.1002/prp2.755. PMID: 33951329.