These data were observed in primary pulmonary endothelial cells after pharmacologic inhibition of FXN, mice carrying a genetic endothelial deletion of FXN, and inducible pluripotent stem cell-derived endothelial cells from patients with FXN mutations. Altogether, this study indicates FXN is an upstream driver of pathologic aberrations in metabolism and genomic stability. Moreover, our study highlights FXN-specific vasoconstriction in vivo, prompting future studies to investigate available and novel PH therapies in contexts of FXN deficiency.
Friday, May 12, 2023
Frataxin deficiency disrupts mitochondrial respiration and pulmonary endothelial cell function
Culley MK, Rao RJ, Mehta M, Zhao J, El Khoury W, Harvey LD, Perk D, Tai YY, Tang Y, Shiva S, Rabinovitch M, Gu M, Bertero T, Chan SY. Frataxin deficiency disrupts mitochondrial respiration and pulmonary endothelial cell function. Vascul Pharmacol. 2023 May 8:107181. doi: 10.1016/j.vph.2023.107181. Epub ahead of print. PMID: 37164245.